Daylight Savings Time (DST), Coordinated Universal Time (UTC), International Atomic Time
(TAI), and Possible Justifications for a Universally-Accepted Model

December 17, 2024 - Tyler Scafidi

how many specific seconds are in a year, atomic time

Al Images  Videce  Shopping  Web  Mews  Forums i More

4 Al Overview

According to the atomic time standard, a year contains
seconds. ¢

Explanation:

A standard year has 345 days, One day has 24 hours, One hour has 60
minutes, and One minute has 0 seconds. &

Therefore, by multiplying 345 days x 24 hours/day x 40 minutes/hour x 60
seconds/minute, you get 31,636,000 seconds in a year. @

Key point: This calculation is based on the standard definition of a second in
the International System of Units (SI), which is defined using the properties of
cesium atoms. &

how many specific seconds are in a year, unix time

Al Iy

31,556,926 seconds

1Year: 31,556,926 seconds (365.24 days)

People also ask

Does Unix time count leap seconds?
What is 31534000 Unix time?
What is 1second in Unix time?

Iz a3 UNIX timestamp 32 or 647

Wikipedia

MAYBE LATER (D | ALREADY D OMATED CLOSE X
e “January 1, 1970" redirects here. Not to be confused with January 1, 1970 (date).
onds “Epoch time" redirects here. For ofher epochs, see Epoch (computing). For the newspaper, see The

Epoch Times.

Unix time[ is a date and time representation widely used in computing. It

S3: 45
P T #] :—qg‘ggg

measures time by the number of non-leap seconds that have elapsed since
00:00:00 UTC on 1 January 1970, the Unix epoch. For example, at midnight on
January 1 2010, Unix time was 1262304000.% :

Unix time passed

! - . _ _ ) 1,000 000 000 seconds on
Unix time originated as the system time of Unix operating systems. It has come 3001-09-00T01 48407 11 It
wias celebrated in
Copenhagen, Denmark, at
a party held by the Danish
LIMEX Lser Group at
03:46:40 local ims.

£33993593 18

&

to be widely used in other computer operating systems, file systems,
programming languages, and databases. In modern computing, values are
sometimes stored with higher granularity, such as microseconds or
nanoseconds.

Definition eait

Unix time across midnight into 17 September 2004 (without leap seconds)

TAI (17 September 2004) UTC {16 to 17 September 2004) Unix time

2004-09-17T00:00:30.75
2004-09-17T00:00:31.00
2004-09-17T00:00:31.25
2004-09-17T00:00:31.50
2004-09-17T00:00:31.75
2004-09-17T00:00:32.00
2004-09-17T00:00:32.25
2004-09-17T00:00:32.50
2004-09-17T00:00:32.75
2004-09-17T00:00:33.00
2004-09-17T00:00:33.25

2004-09-16T23:50:58.75
2004-09-16T723:58:59.00
2004-09-16723:59:69.25
2004-09-16T23:50:59.50
2004-09-16T23:59:59.75
2004-09-17T00:00:00.00
2004-09-17T00:00:00.25
2004-09-17T00:00:00.50
2004-09-17T00:00:00.75
2004-09-17T700:00:01.00
2004-09-17T00:00:01.25

10953792 198.75
1095 378 199.00
1095379 199.25
1095 379 199.50
1095 379 199.75
1095 379 200.00
1095 379 200.25
1095 379 20050
1095379 200.75
1095 379 201.00
1095379 201.25

VWhen a leap second occurs, the UTC day is not exactly 86 400 seconds long and the Unix time number
{which always increases by exactly 86 400 each day) experiences a discontinuity. Leap seconds may be

mmmMiiim mmimmmemkhim Rlm mm Bl im lmmin mmmmem il e mime e mmem A mlmem ) e 3 e eiimm e bem Memn L Rl ]



positive or negative. NO negative leap second nas ever been declared, DU IT one were [0 De, then at the end

of a day with a negative leap second, the Unix time number would jump up by 1 to the start of the next day.

During a positive leap second at the end of a day, which occurs about every year and a half on average, the

Unix time number increases continuously into the next day during the leap second and then at the end of the

leap second jumps back by 1 (returning to the start of the next day). For example, this is what happened on
strictly conforming POSIX.1 systems at the end of 1998:

Unix time across midnight into 1 January 1999 {positive leap second)

TAIl {1 January 1999)
1999-01-01T00:00:29.75
1999-01-01T00:00:30.00
1999-01-01T700:00:30.25
1999-01-01T00:00:30.50
1999-01-01T00:00:30.75
1999-01-01T700:00:31.00
1999-01-01T00:00:31.25
1999-01-01T00:00:31.50
1999-01-01T00:00:31.75
1999-01-01T00:00:32.00
1999-01-01700:00:32.25
1999-01-01T00:00:32.50
1999-01-01T00:00:32.75
1999-01-01T700:00:33.00
1999-01-01T00:00:33.25

UTC (31 December 1998 to 1 January 1999)

1998-12-31T23:59:58.75
1988-12-31T23:59:568.00
1998-12-31723:59:59.25
1988-12-31T723:59:68.50
1998-12-31T23:59:68.75
1998-12-31T723:59:60.00
1998-12-31T23:59:60.25
1998-12-31T23:59:60.50
1998-12-31T23:59:60.73
1999-01-01T00:00:00.00
1999-01-01T00:00:00.25
1949-01-01T00:00:00.50
1999-01-01T00:00:00.75
1999-01-01T00:00:01.00
19489-01-01T00:00:01.25

Unix time
915148 798.75
915148 799.00
915148 799.25
915 148 799.50
915148 799.75
915 148 800.00
915 148 800.25
915 148 800.50
915 148 800.75
915 148 800.00
915148 800.25
915 148 800.50
915 148 800.75
915148 801.00
915148 801.25

Unix time numbers are repeated in the second immediately following a positive leap second. The Unix time
number 1 483 228 800 is thus ambiguous: it can refer either to start of the leap second (2016-12-31
23:59:60) or the end of it, one second later (2017-01-01 00:00:00). In the theoretical case when a negative
leap second occurs, no ambiguity is caused, but instead there is a range of Unix time numbers that do not

refer to any point in UTC time at all.

Variant that counts leap seconds

[ edit]

Another, much rarer, non-conforming variant of Unix time keeping involves incrementing the value for all

seconds, including leap seconds;!! some Linux systems are configured this way."] Time kept in this fashion

is sometimes referred to as "TAI" (although timestamps can be converted to UTC if the value corresponds
to a time when the difference between TAl and UTC is known), as opposed to "UTC" (although not all UTC
time values have a unique reference in systems that do not count leap seconds).”!

Because TAl has no leap seconds, and every TAl day is exactly 86400 seconds long, this encoding is
actually a pure linear count of seconds elapsed since 1970-01-01T00:00:10 TAl. This makes time interval
arithmetic much easier. Time values from these systems do not suffer the ambiguity that strictly conforming
POSIX systems or NTP-driven systems have.

In these systems it is necessary to consult a table of leap seconds to correctly convert between UTC and
the pseudo-Unix-time representation. This resembles the manner in which time zone tables must be
consulted to convert to and from civil time; the |[ANA time zone database includes leap second information,
and the sample code available from the same source uses that information to convert between TAl-based
timestamps and local time. Conversion also runs into definitional problems prior to the 1972

commencement of the current form of UTC (see section UTC basis below).

This system, despite its superficial resemblance, is not Unix time. It encodes times with values that differ by

several seconds from the POSIX time values. A version of this system, in which the epoch was 1970-01-
01T00:00:00 TAIl rather than 1870-01-01T00:00:10 TAI, was proposed for inclusion in ISO C's time.h,
but only the UTC part was accepted in 20111 A tai_clock does, however, exist in C++20.

The precise definition of Unix time as an encoding of UTC is only uncontroversial when applied to the

present form of UTC. The Unix epoch predating the start of this form of UTC does not affect its use in this

era: the number of days from 1 January 1970 (the Unix epoch) to 1 January 1972 (the start of UTC) is not in

question, and the number of days is all that is significant to Unix time.

The meaning of Unix time values below +683 072 000 {i.e., prior to 1 January 1972) is not precisely defined.

The basis of such Unix times is best understood to be an unspecified approximation of UTC. Computers of
that era rarely had clocks set sufficiently accurately to provide meaningful sub-second timestamps in any
case. Unix time is not a suitable way to represent times prior to 1972 in applications requiring sub-second
precision; such applications must, at least, define which form of UT or GMT they use.

As of 2009, the possibility of ending the use of leap seconds in civil time is being considered ['”] A likely

means to execute this change is to define a new time scale, called Infernational Timelctaion neeted]

initially matches UTC but thereafter has no leap seconds, thus remaining at a constant offset from TAI. If

this happens, it is likely that Unix time will be prospectively defined in terms of this new time scale, instead of
UTC. Uncertainty about whether this will occur makes prospective Unix time no less predictable than it
already is: if UTC were simply to have no further leap seconds the result would be the same.

Convert days, hours and minutes to minutes

Enter number of days: |365.25
Enter number of hours: _
Enter number of minutes: _

Click to Convert |EFEEES Minutes

Convert minutes to days, hours and minutes

Enter number of minutes: | 525,960

SRR | 355 days 6 hours 0 minutes |[Reset]

D. J. Bernstein
Time

UTC, TAI, and UNIX time

‘What is TAI?

TAI, Temps Atomique International (French for International Atomic Time), measures real time. One second of TAT time is a constant duration defined by cesiun
radiation. TAI has been measured continuously since 1955 and is the foundation of all civil time standards.

TAI times are identified by year, month, day, hour, minute, and second. There are exactly 86400 TAI seconds in every TAI day. TAI days are labelled by the
Gregorian calendar.

https://cr.yp.to/proto/utctai.html




Convert days, hours and minutes to minutes

Enter number of days:

Enter number of hours:
Enter number of minutes:

Click to Convert |EZEJEN Minutes

Convert minutes to days, hours and minutes

Enter number of minutes: 525,600
[ AR || 365 days O hours 0 minutes |[Reset]

Proposed Straight Time/International

Atomic Time (TAI) - (a) Average time based on 365-day annual model

30.41667 | average days per month in a year

SPYa 31536000 | 31536000 91.25|average days in a quarter
MPYa 525600/ 525600 182.5|average days in six month
HPYa 8760 8760 365|average days per year
DPYa 365 365 [ [

l |

86400 seconds multiplied by 365, no leap Seconds Per Year (SPY)

seconds
[ Minutes Per Year (MPY)
Current Time based on leap years/UTC (b) Hours Per Year (HPY)
Days Per Year (DPY)
SPYb 31557600] 31557600 | |
MPYb 525960| 525960 [ |
HPYb 8766 8766 6|extra hours per year constant
DPYb 365.25 365.25 12|(months in a year
0.5|extra hours per month

86400 seconds per day multiplied by

365.25, leap seconds 1

wn

extra hours per quarter

[ [

w

extra hours per six months

Hours_per_day_a 24

)

extra hours per year contstant

Hours_per_day_b (current) 24.01644

Where to add the extra hours? Gregorian calendar observers may benefit from 6 hours extra on their
New Year's Eve.
Others: need to be considered

The time per year does not change, just how and when we acknowledge it.

The time change will not affect your seasons, only the time of day you are used to experiencing them.

If the leap year is observed every four years, a standard UTC year is 365.25 days, then December 30th
of the fourth year is the last day of the year. Why they chose February 29?

Regardless, the time does not change; we orbit at the same rate (essentially) as far as | know. There
can be some deviations for drift and maybe space weather, pull by sun, and any significant
disruptions to the earth that may somehow alter it's path in any way.

What kind of implication does this have on algorithmic automations, especially Finance? Is there a
benefit to keeping it this way financially, less lag, or minute values that can have significant impacts?

There are some arguments that UTC time does not need or require highly-accurate time, and the
clocks would be affected.

However, what is we replaced them like many of the other technologies, such as digital TV antenna
requirements, modern vehicles, etc. It would need to be adopted globally.

https://en.wikipedia.org/wiki/New Year

calculator.html?tcdayl=&tchourl=6&tcminutel=&tcsecond1=&0

https://www.calculator.net/time-
=%2B&tcday2=&tchour2=0&tcminute2=&tcsecond2=&tcday3=&tchour3=&t
cminute3=&tcsecond3=&ctype=1&x=Calculate

Time Calculator

This calculator can be used to "add" or "subtract” two time values. Input fields can be left blank, which
will be taken as 0 by default.

0 days 6 hours 0 minutes 0 seconds
+ 0 days 0 hours O minutes 0 seconds

= 0 days 6 hours 0 minutes 0 seconds
=0.25 days

=6 hours

= 360 minutes

= 21,600 seconds

https://en.wikipedia.org/wiki/New_Year

Calculator. net FINANCIAL FITNESS & HEALTH

home / other / time calculator

Time Calculator

This calculator can be used to "add" or "subtract" two time values. Input fields can be left blank, which
will be taken as 0 by default.

365 days 0 hours 0 minutes 0 seconds
+ 0 days 0 hours 0 minutes 0 seconds

= 365 days 0 hours 0 minutes 0 seconds
= 365 days

= 8,760 hours

= 525,600 minutes

= 31,536,000 seconds

365 days are 52 weeks 1 days
365 days are around 11 months 31 days (assume ohe month is 30.4375 days)

Day Hour Minute Second

EZN [ |E | |

©O add+ O Subtract—

L |E Lo |E |

E| | | |

Adoptions of January 1
See also: Adoption of the Gregorian calendar and Old Style and New Style dates

It took quite a long time before January 1 again became the universal or standard start of the civil year. The
years of adoption of January 1 as the new year are as follows:

Country Start year
Holy Roman Empire (~Germany)l2) 1544
Spain, Portugal, Poland(??] 1556

Prussia, ?2 Denmark,[?* and Sweden.?? | 1558

France (Edict of Roussillon) 1564
Southern Netherlands/**] 1576
Lorrainelciation aeeded] 1579
Duteh Republic(2] 1583
Scotlandl?'122 1600
Russial? 17000
Tuscany?’] 1721

England and Wales, Ireland and

1752
British Empirel2ZIc]
Japant’” 1873
Chinal20] 1912
Greece[?] 1923
Turkey[0! 1926
Thailangletation neecec] e

What's the problem?

See also

Assyrian Mew Year also known as Kha b-Misan — Spring festival of indigenous Assyrians, celebrated on the first day of April
Aztec Mew Year

Baby Mew Year — Personification of the New Year

Berber Mew Year, also known as Yennayer — First month of the Berber year

Cambodian Mew Year — Traditional Cambodian holiday

Chinese Mew Year — Traditional Chinese holiday

Ethiopian Mew Year, also known as Enkutatash — Public holiday of the MNew Year in Ethiopia and Eritrea
Hogmanay — Scottish celebration of MNew Year

Hobiyee — Misga'a new year

Indian Mew Year's days — Indian Mew Year

lslamic Mew Year — Beginning of a new lunar Hijri year

Japanese Mew Year — Traditional holiday

Jewish Mew Year — Jewish MNew Year

Korean MNew Year — Traditional Korean holiday

Lunar Mew Year — Beginning of a year in a lunar calendar

Iddori Mew Year — kaori MNew Year festival marked by rising of the constellation Matariki/Pleiades
Iongalian Mew Year — First day of the year according to the Mongolian lunar calendar

Mewy Year's Eve — Last day of the Gregorian calendar year

Moghon — Ossetian MNew Year

Cld Mew Year (or Orthodox New Year, Julian Mew Year)

Qld Style and Mew Style dates — Changes in calendar conventions

Pohela Boishakh — Bengali new year

Pakistani Mew Year — Religious, harvest and traditional new vear festival

Persian Mew Year — lranian New Year marking the March equinox

Russian Mew Year — Mew Year celebrations in Russia and other post-Soviet countries

Sinhalese Mew Year — Sri Lankan new year holiday

Thai Mew Year — Traditional Thai Mew Year's holiday

Twiclve Grapes — Spanish New Year tradition

Wietnamese Mew Year, also known as Tét — Vietnamese New Year celebration

List of films set around New Year

For many years, the UNI¥X localtime(} time-display routine didn't support leap seconds. In effect it treated TAT as UTC. Its displays slipped 1 second away from the
correct local time as each leap second passed. Nobody cared; clocks weren't set that accurately anyway.

Unfortunately, xntpd, a program that synchronizes clocks using the Network Time Protocol, pandered to those broken localtime() libraries, at the expense of
reliability. Watch how the xntpd time scale increases as a leap second occurs:

1997-06-30 23:59:59.7 UTC -> 867715199.7 xntpd

1TANT AL INAT. SN LN O TTTYY ~ OST7TT1 810NN O creniden A



LYY [-U0-3U LIDHIY.5 UL -2 30/ /1I1¥¥.8 XIUpd
1997-06-30 23:59:59.9 UTC -> 867715199.9 xntpd
1997-06-30 23:59:60.0 UTC -> 867715200.0 xntpd
1997-06-30 23:59:60.1 UTC -> 867715200.1 xntpd
1997-06-30 23:59:60.2 UTC -> 867715200.2 xntpd
1997-06-30 23:59:60.3 UTC -> 867715200.3 xntpd
1997-06-30 23:59:60.4 UTC -> 867715200.4 xntpd
1997-06-30 23:59:60.5 UTC -> 867715200.5 xntpd
1997-06-30 23:59:60.6 UTC -> 867715200.6 xntpd
1997-06-30 23:59:60.7 UTC -> 867715200.7 xntpd
1997-06-30 23:59:60.8 UTC -> 867715200.8 xntpd
1997-06-30 23:59:60.9 UTC -> 867715200.9 xntpd
1997-07-01 00:00:00.0 UTC -> 867715200.0 xntpd
1997-07-01 00:00:00.1 UTC -> 867715200.1 xntpd
1997-07-01 00:00:00.2 UTC -> 867715200.2 xntpd

The xntpd time scale repeats itself] It cannot be reliably converted to UTC.

By resetting the clock at each leap second, xntpd extracts a correct UTC display (except, of course, during leap seconds) from the broken localtime() libraries.
Meanwhile, it produces incorrect results for applications that add and subtract real times.

https://en.wikipedia.org/wiki/International Atomic_Time

From Wikipedia, the free encyclopedia

0 December 16: Wikipedia still can't be sold

We're sorry we've asked you a few times recently, butits Monday, December 16 —
please don'twait until tomorrow to help. We're happy you consult Wikipedia Give $2.75 >
often. If just 2% of our most loyal readers gave $2.75 today, we'd hit our goal in a

few hours. Most readers don't donate, so if Wikipedia has given you $2.75 worth of e i

knowledge, please give. Any contribution helps, whether it's $2.75 one time or
monthly. WIKIMEDIA

MAYBE LATER (8 | ALREADY D ONATED CLOSE X

International Atomic Time (abbreviated TAl, from its French name tenips atomique international'l is
a high-precision atomic coordinate time standard based on the notional passage of proper time on Earth's
geoid.”’! TAl is a weighted average of the time kept by over 450 atomic clocks in over 80 national
laboratories worldwide ?! It is a continuous scale of time, without leap seconds, and it is the principal
realisation of Terrestrial Time (with a fixed offset of epoch). It is the basis for Coordinated Universal Time
(UTC), which is used for civil timekeeping all over the Earth's surface and which has leap seconds.

UTC deviates from TAl by a number of whole seconds. As of 1 January 2017, immediately after the most
recent leap second was put into effect,”! UTC has been exactly 37 seconds behind TAIl. The 37 seconds
result from the initial difference of 10 seconds at the start of 1972, plus 27 leap seconds in UTC since
1972. In 2022, the General Conference on Weights and Measures decided to abandon the leap second by
or before 2035, at which point the difference between TAl and UTC will remain fixed. !

TAI may be reported using traditional means of specifying days, carried over from non-uniform time
standards based on the rotation of the Earth. Specifically, both Julian days and the Gregorian calendar are
used. TAI in this form was synchronised with Universal Time at the beginning of 1958, and the two have
drifted apart ever since, due primarily to the slowing rotation of the Earth.

Operation [eat)

TAl is a weighted average of the time kept by over 450 atomic clocks in over 80 national laboratories

JRPRPURS DT RO DO DU | 11 o WRRIVROU g S ST R UGS P Uy ORI O U P ORI N PSS S [ S N B AR A

https://www.reddit.com/r/changemyview/comments/8v142p/cmv_computers should use tai as time reference
#:~:text=1f%20a%20computers%20start%20using,happen%20at%20the%20same%20time.

4 Al Overview

TAl (Internaticnal Atomic Time) is not generally used in programming
languages and servers because it doesn't account for leap seconds, which
can cause disruptions in systems that rely on consistent timekeeping, making
it impractical for most applications that need to synchronize with human
time zones and calendars; most systems instead use Coordinated Universal
Time (UTC} which incorporates leap seconds when necessary. @

Key reasons why TAl is not ideal for programming:

Leap second issues:

TAl is a centinucus time scale, meaning it deesn't have leap seconds, while UTC
dees. This means that when a leap second is added to UTC, a system using TAI
would suddenly be "ahead” by ohe second compared to cther systems, causing
potential problems with time=sensitive cperations. @

Complexity for developers:

Converting between TAl and other timme fermats used by humans {like local time) can
be quite complex and error-prene, reguiring additional calculations to account fer
leap seconds. @

Lack of practical use:

Most applications don't need the extreme precision of TAl and are better served by
UTC, which is designed to align with human timekeeping while still maintaining high
accuracy. @

When might TAl be useful?

* Highly precise scientific applications: In situations where extremely precise
timekeeping is needed, such as certain scientific experiments, researchers might
use TAl directly, but even then, they would likely need to convert it to UTC for
human interpretation.

Generative Al is experimental.




